From birth to death, we all experience surprisingly ubiquitous changes over time due to aging. If we can predict aging in the digital domain, that is, the digital twin of the human body, we would be able to detect lesions in their very early stages, thereby enhancing the quality of life and extending the life span. We observed that none of the previously developed digital twins of the adult human body explicitly trained longitudinal conversion rules between volumetric medical images with deep generative models, potentially resulting in poor prediction performance of, for example, ventricular volumes. Here, we establish a new digital twin of an adult human body that adopts longitudinally acquired head computed tomography (CT) images for training, enabling prediction of future volumetric head CT images from a single present volumetric head CT image. We, for the first time, adopt one of the three-dimensional flow-based deep generative models to realize this sequential three-dimensional digital twin. We show that our digital twin outperforms the latest methods of prediction of ventricular volumes in relatively short terms.
翻译:从出生到死亡,我们都会因为衰老而经历令人惊讶的无处不在的变化。如果我们能够预测数字领域的老龄化,也就是人体的数码双胞胎,我们就能在最初的阶段发现损伤,从而提高生活质量,延长寿命。我们发现,以前开发的成人身体的数字双胞胎中没有一个在具有深层基因化模型的体积医学图象之间经过过明确培训的纵向转换规则,这可能导致例如心血管量的预测性能差。在这里,我们建立了一个成年人身体的新数字双胞胎,采用纵向获得的头部计算图象(CT)来进行培训,从而能够从目前单张体积头CT图象中预测未来的体积头CT图象。我们第一次采用了一个三维的深度流基深度基因化模型来实现这个连续的三维数字双胞胎。我们显示,我们的数字双胞胎在相对较短的时间内超越了对心血管量的最新预测方法。