Despite the relevance of the binomial distribution for probability theory and applied statistical inference, its higher-order moments are poorly understood. The existing formulas are either not general enough, or not structured and simplified enough for intended applications. This paper introduces novel formulas for binomial moments, in form of \emph{polynomials in the variance} rather than in the success probability. The obtained formulas are arguably better structured, simpler and superior in their numerical properties compared to prior works. In addition, the paper presents algorithms to derive these formulas along with working implementation in the Python symbolic algebra package. The novel approach is a combinatorial argument coupled with clever algebraic simplifications which rely on symmetrization theory. As an interesting byproduct we establish \emph{asymptotically sharp estimates for central binomial moments}, improving upon partial results from prior works.
翻译:尽管二进制分布与概率理论和应用统计推断相关,但其较高层次的时数却不易理解。 现有的公式要么不够通用, 要么不够结构化和简化, 不适合预期的应用。 本文介绍了二进制时数的新公式, 其形式是差异中的 emph{ polynomial, 而不是成功概率。 获得的公式与先前的工程相比,其数字属性的结构性、 简单和优于以往的工程性能。 此外, 本文还提出了计算法, 以得出这些公式, 以及Python 符号代数包的工作实施。 新的方法是一种组合式论证, 加上智能的代数简化, 后者依赖对称理论。 作为有趣的副产品, 我们为中央二进制时数建立了 emph{ asmptotocright 估计 。 } 在先前的工程取得部分结果后, 有了改进。