In recent years, more and more applications use ad-hoc networks for local M2M communications, but in some cases such as when using WSNs, the software processing delay induced by packets relaying may not be negligible. In this paper, we planned and carried out a delay measurement experiment using Raspberry Pi Zero W. The results demonstrated that, in low-energy ad-hoc networks, processing delay of the application is always too large to ignore; it is at least ten times greater than the kernel routing and corresponds to 30% of the transmission delay. Furthermore, if the task is CPU-intensive, such as packet encryption, the processing delay can be greater than the transmission delay and its behavior is represented by a simple linear model. Our findings indicate that the key factor for achieving QoS in ad-hoc networks is an appropriate node-to-node load balancing that takes into account the CPU performance and the amount of traffic passing through each node.


翻译:近年来,越来越多的应用软件在本地M2M通信中使用了特设热网络,但在某些情况下,例如使用WSN时,由包转发引发的软件处理延迟可能不可忽略。在本文中,我们计划并进行了使用Raspberry Pi Zero W的延迟测量实验。结果显示,在低能临时热网络中,处理延迟总是太大,无法忽略;至少比内核路由大十倍,相当于传输延迟的30%。此外,如果任务为CPU密集型,例如包加密,处理延迟可能大于传输延迟,其行为表现为简单的线性模型。我们的调查结果表明,在临时热网络中实现QOS的关键因素是适当的节点到节点负荷平衡,考虑到CPU的性能和通过每个节点的流量。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年2月12日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员