Research on improving the robustness of neural networks to adversarial noise - imperceptible malicious perturbations of the data - has received significant attention. The currently uncontested state-of-the-art defense to obtain robust deep neural networks is Adversarial Training (AT), but it consumes significantly more resources compared to standard training and trades off accuracy for robustness. An inspiring recent work [Dapello et al.] aims to bring neurobiological tools to the question: How can we develop Neural Nets that robustly generalize like human vision? [Dapello et al.] design a network structure with a neural hidden first layer that mimics the primate primary visual cortex (V1), followed by a back-end structure adapted from current CNN vision models. It seems to achieve non-trivial adversarial robustness on standard vision benchmarks when tested on small perturbations. Here we revisit this biologically inspired work, and ask whether a principled parameter-free representation with inspiration from physics is able to achieve the same goal. We discover that the wavelet scattering transform can replace the complex V1-cortex and simple uniform Gaussian noise can take the role of neural stochasticity, to achieve adversarial robustness. In extensive experiments on the CIFAR-10 benchmark with adaptive adversarial attacks we show that: 1) Robustness of VOneBlock architectures is relatively weak (though non-zero) when the strength of the adversarial attack radius is set to commonly used benchmarks. 2) Replacing the front-end VOneBlock by an off-the-shelf parameter-free Scatternet followed by simple uniform Gaussian noise can achieve much more substantial adversarial robustness without adversarial training. Our work shows how physically inspired structures yield new insights into robustness that were previously only thought possible by meticulously mimicking the human cortex.


翻译:Abstract: 近年来,如何提高神经网络对抗噪声的鲁棒性引起了研究人员的极大关注。目前不争的事实是,对抗训练(Adversarial Training,AT)是目前获得强大深度神经网络鲁棒性的最佳方法,但是相对于标准训练,它需要更多的资源和牺牲准确性。最近的一个令人振奋的研究[Dapello等]旨在将神经生物学工具引入问题中:如何开发出像人眼视觉一样的鲁棒神经网络?[Dapello等]设计了一种网络结构,其中神经隐藏的第一层模仿了灵长类的主要视觉皮层(V1),后面的结构则来自当前的CNN视觉模型。在小扰动测试中,它似乎在标准视觉基准上实现了非平凡的对抗鲁棒性。本文重新审视了这个受生物启发的工作,并问一个问题:是否可以使用受物理启发的基于原则的无参数表示来实现相同的目标?我们发现,小波散射变换可以取代复杂的V1皮层,简单的均匀高斯噪声可以扮演神经的随机性角色,以实现对抗鲁棒性。在自适应对抗攻击下的CIFAR-10基准测试的广泛实验中,我们发现:1)当对抗攻击半径的强度设置为常用基准时,VOneBlock体系结构的鲁棒性相对较弱(非零)。2)用现成的无参考Scatternet取代前端的VOneBlock,然后加上简单的均匀高斯噪声可以在没有对抗训练的情况下实现更实质的对抗鲁棒性。我们的工作展示了受物理启发的结构如何提供先前只有通过模仿人类皮层才能实现的鲁棒性的新见解。

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年7月10日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月3日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员