Future generations of wireless networks will offer newfangled performance via unprecedented solutions: the metasurface innovation will drive such a revolution by posing control onto the surrounding propagation environment, always portrayed as a tamper-proof black-box. The RIS technology, envisioned as the discrete version of a metasurface, can be dynamically configured to alter the propagation properties of the impinging signals by, e.g., steering the corresponding beams towards defined directions. This will unlock new application opportunities and deliver advanced end-user services. However, this fascinating solution comes at not negligible costs: RIS require ad-hoc design, deployment and management operations to be fully exploited. In this paper, we tackle the RIS placement problem from a theoretical viewpoint, showcasing a large-scale solution on synthetic topologies to improve communication performance while solving the "dead-zone" problem. Additionally, our mathematical framework is empirically validated within a realistic indoor scenario, the Rennes railway station, showing how a complex indoor propagation environment can be fully disciplined by an advanced RIS installation.
翻译:未来几代无线网络将通过前所未有的解决方案带来新的变化: 元表面创新将通过对周围的传播环境进行控制来推动这种革命,这种控制总是被描绘成防作弊的黑盒。 被设想为元表面的离散版本的RIS技术可以动态地配置来改变阻塞信号的传播特性, 比如通过引导相应的光束走向确定方向。 这将释放新的应用机会并提供先进的终端用户服务。 但是,这种令人着迷的解决方案的成本不可忽略: RIS需要从理论角度解决RIS安置问题, 展示关于合成表面学的大规模解决方案, 以便在解决“ 死区” 问题的同时改善通信性能。 此外, 我们的数学框架在现实的室内情景下得到了经验验证, Rennes 铁路站, 展示了一个先进的RIS安装如何充分规范复杂的室内传播环境。