Cross-lingual transfer learning has proven useful in a variety of Natural Language Processing (NLP) tasks, but it is understudied in the context of legal NLP, and not at all in Legal Judgment Prediction (LJP). We explore transfer learning techniques on LJP using the trilingual Swiss-Judgment-Prediction dataset, including cases written in three languages. We find that cross-lingual transfer improves the overall results across languages, especially when we use adapter-based fine-tuning. Finally, we further improve the model's performance by augmenting the training dataset with machine-translated versions of the original documents, using a 3x larger training corpus. Further on, we perform an analysis exploring the effect of cross-domain and cross-regional transfer, i.e., train a model across domains (legal areas), or regions. We find that in both settings (legal areas, origin regions), models trained across all groups perform overall better, while they also have improved results in the worst-case scenarios. Finally, we report improved results when we ambitiously apply cross-jurisdiction transfer, where we further augment our dataset with Indian legal cases.
翻译:在各种自然语言处理(NLP)任务中,跨语言的转移学习被证明是有用的,但是,在法律的NLP(法律判决预测(LJP)中,这种学习没有得到充分的研究。我们利用瑞士-司法三语的瑞士-司法预防三语数据集,包括用三种语言书写的案件,探索有关LJP的转让学习技巧。我们发现,跨语言的转让改善了各种语言的总体结果,特别是在我们使用基于适应者的微调时。最后,我们进一步改进了模型的性能,利用3x大的培训资料,用原始文件的机器翻译版本来增加培训数据集。此外,我们进行了一项分析,探讨跨地区和跨区域转移的影响,即培训一个跨领域(法律领域)或跨区域的模式。我们发现,在这两种情况下(法律领域、原籍地区),经过培训的所有群体模式总体上都表现更好,同时在最坏的情况下也取得了更好的结果。最后,我们报告说,当我们雄心勃勃勃地应用跨司法管辖权转移时,我们用印度法律案例进一步加强了数据。