It is challenging to train and deploy Transformer LMs for hybrid speech recognition 2nd pass re-ranking in low-resource languages due to (1) data scarcity in low-resource languages, (2) expensive computing costs for training and refreshing 100+ monolingual models, and (3) hosting inefficiency considering sparse traffic. In this study, we present a new way to group multiple low-resource locales together and optimize the performance of Multilingual Transformer LMs in ASR. Our Locale-group Multilingual Transformer LMs outperform traditional multilingual LMs along with reducing maintenance costs and operating expenses. Further, for low-resource but high-traffic locales where deploying monolingual models is feasible, we show that fine-tuning our locale-group multilingual LMs produces better monolingual LM candidates than baseline monolingual LMs.
翻译:由于:(1) 低资源语言数据稀缺,(2) 培训和更新100+单一语言模式的费用昂贵,以及(3) 考虑到交通量稀少,管理效率低下,因此培训和部署用于混合语音识别的变换LMs 的第二代低资源语言转换LMs具有挑战性。在这项研究中,我们提出了一个新的方法,将多种低资源本地人聚集在一起,优化ASR中多语言变换LM的功能。我们的多语言组合多语言变换LMS优于传统的多语言LMs,同时降低维护成本和运营开支。此外,对于使用单一语言模式可行的低资源但高度贸易的低资源但高度贸易的LMs,我们显示,微调我们的本地组合多语言LMs比基线单语言LMs的单一LMs更好使用单一语言的LMs。