We consider the problem of simulating diffusion bridges, which are diffusion processes that are conditioned to initialize and terminate at two given states. The simulation of diffusion bridges has applications in diverse scientific fields and plays a crucial role in the statistical inference of discretely-observed diffusions. This is known to be a challenging problem that has received much attention in the last two decades. This article contributes to this rich body of literature by presenting a new avenue to obtain diffusion bridge approximations. Our approach is based on a backward time representation of a diffusion bridge, which may be simulated if one can time-reverse the unconditioned diffusion. We introduce a variational formulation to learn this time-reversal with function approximation and rely on a score matching method to circumvent intractability. Another iteration of our proposed methodology approximates the Doob's $h$-transform defining the forward time representation of a diffusion bridge. We discuss algorithmic considerations and extensions, and present numerical results on an Ornstein--Uhlenbeck process, a model from financial econometrics for interest rates, and a model from genetics for cell differentiation and development to illustrate the effectiveness of our approach.
翻译:我们考虑了模拟扩散桥梁的问题,这种模拟扩散桥梁是两个特定国家的初始化和终止条件的传播过程。扩散桥梁的模拟在不同的科学领域具有应用性,并且在不同观测扩散的统计推论中发挥着关键作用。众所周知,这是一个具有挑战性的问题,在过去二十年中,这个问题引起了人们的极大关注。这篇文章通过展示获取扩散桥近似的新途径,为丰富文献提供了一种新途径。我们的方法是基于传播桥梁的后向时间代表,如果一个人能够对无条件的传播进行时间反向,就可以模拟。我们引入了一种变异的配方来学习这种时间反向的功能近似,并依靠一种得分匹配方法来绕过可忽略性。我们拟议方法的另一个迭代之词是Doob的$- transform,它界定了扩散桥梁的远期代表。我们讨论了算法方面的考虑和扩展,并介绍了Ornstein-Uhlenbeck 进程的数字结果,这是一个来自利率的金融计量模型,以及细胞差异和发展方法的模型。