Removing out-of-distribution (OOD) images from noisy images scraped from the Internet is an important preprocessing for constructing datasets, which can be addressed by zero-shot OOD detection with vision language foundation models (CLIP). The existing zero-shot OOD detection setting does not consider the realistic case where an image has both in-distribution (ID) objects and OOD objects. However, it is important to identify such images as ID images when collecting the images of rare classes or ethically inappropriate classes that must not be missed. In this paper, we propose a novel problem setting called in-distribution (ID) detection, where we identify images containing ID objects as ID images, even if they contain OOD objects, and images lacking ID objects as OOD images. To solve this problem, we present a new approach, \textbf{G}lobal-\textbf{L}ocal \textbf{M}aximum \textbf{C}oncept \textbf{M}atching (GL-MCM), based on both global and local visual-text alignments of CLIP features, which can identify any image containing ID objects as ID images. Extensive experiments demonstrate that GL-MCM outperforms comparison methods on both multi-object datasets and single-object ImageNet benchmarks.


翻译:摘要:从互联网上爬取的嘈杂图像中去除已知分布外(OOD)的图像,是构建数据集的重要预处理,它可以通过使用视觉语言基础模型(CLIP)进行零样本OOD检测来解决。然而,现有的零样本OOD检测设置并不考虑实际情况,即图像同时包含内部分布(ID)物体和OOD物体的情况。然而,当收集罕见类别或道德上不适当类别的图像时,识别此类图像为ID图像非常重要。在本文中,我们提出了一种新颖的问题设置,称为内部分布(ID)检测,其中标识包含ID物体的图像为ID图像,即使它们包含OOD物体,而缺乏ID物体的图像则为OOD图像。为了解决这个问题,我们提出了一种新的方法称为GL-MCM(Global-Local Maximum Concept Matching),基于CLIP特征的全局和局部视觉-文本对齐,可以识别任何包含ID物体的图像作为ID图像。大量实验证明,GL-MCM在多物体数据集和单物体ImageNet基准测试上优于比较方法。

0
下载
关闭预览

相关内容

【AAAI2022】对偶对比学习在人脸伪造检测中的应用
专知会员服务
22+阅读 · 2022年1月9日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
58+阅读 · 2021年6月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
深度学习与计算机视觉任务应用综述
深度学习与NLP
50+阅读 · 2018年12月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
深度学习与计算机视觉任务应用综述
深度学习与NLP
50+阅读 · 2018年12月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员