The key to reconciling the polynomial-time intractability of many machine learning tasks in the worst case with the surprising solvability of these tasks by heuristic algorithms in practice seems to be exploiting restrictions on real-world data sets. One approach to investigating such restrictions is to analyze why heuristics perform well under restrictions. A complementary approach would be to systematically determine under which sets of restrictions efficient and reliable machine learning algorithms do and do not exist. In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis, As an illustrative example, we give the first parameterized complexity analysis of batch and incremental policy inference under Learning from Demonstration (LfD). Relative to a basic model of LfD, we show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies. We also give the first known restrictions under which efficient solvability is possible and discuss the implications of our solvability and unsolvability results for both our basic model of LfD and more complex models of LfD used in practice.
翻译:将许多机器学习任务在最坏的情况下的多元时间拖累性与这些任务在实际中由超自然算法造成的令人惊讶的溶解性调和起来的关键似乎是利用对真实世界数据集的限制。调查这种限制的一个办法是分析为什么疲劳主义在限制下表现良好。一种补充办法是系统地确定哪些限制组合有效、可靠的机器学习算法是有效的,而不存在。在本文件中,我们展示了如何利用参数化的复杂分析来系统探索算法选项。 举例来说,我们首先对演示中学习的分批和递增政策推论进行了参数化的复杂性分析。 关于LfD的基本模型,我们表明,我们的问题没有一项能够在总体上或相对于环境、演示和政策上的若干(往往同时)限制而得到有效解决。我们还首次提出了已知的限制,根据这些限制,高效率的溶解性是可能的,并讨论了我们的溶解性和不易解性结果对我们的LfD基本模型和在实践中使用的较复杂的LfD模型的影响。