While many problems in machine learning focus on learning mappings between finite-dimensional spaces, scientific applications require approximating mappings between function spaces, i.e., operators. We study the problem of learning collections of operators and provide both theoretical and empirical advances. We distinguish between two regimes: (i) multiple operator learning, where a single network represents a continuum of operators parameterized by a parametric function, and (ii) learning several distinct single operators, where each operator is learned independently. For the multiple operator case, we introduce two new architectures, $\mathrm{MNO}$ and $\mathrm{MONet}$, and establish universal approximation results in three settings: continuous, integrable, or Lipschitz operators. For the latter, we further derive explicit scaling laws that quantify how the network size must grow to achieve a target approximation accuracy. For learning several single operators, we develop a framework for balancing architectural complexity across subnetworks and show how approximation order determines computational efficiency. Empirical experiments on parametric PDE benchmarks confirm the strong expressive power and efficiency of the proposed architectures. Overall, this work establishes a unified theoretical and practical foundation for scalable neural operator learning across multiple operators.
翻译:尽管机器学习中的许多问题聚焦于学习有限维空间之间的映射,但科学应用需要逼近函数空间之间的映射,即算子。我们研究了学习算子集合的问题,并提供了理论与实证上的进展。我们区分两种机制:(i) 多算子学习,其中单个网络表示由参数化函数参数化的连续算子族;(ii) 学习多个独立的单一算子,其中每个算子被独立学习。针对多算子情形,我们引入了两种新架构 $\mathrm{MNO}$ 和 $\mathrm{MONet}$,并在三种设定下建立了通用逼近结果:连续、可积或 Lipschitz 算子。对于后者,我们进一步推导了显式的缩放定律,以量化网络规模必须如何增长才能达到目标逼近精度。对于学习多个单一算子,我们开发了一个平衡子网络间架构复杂度的框架,并展示了逼近阶如何决定计算效率。在参数化偏微分方程基准上的实证实验证实了所提架构的强大表达能力和效率。总体而言,这项工作为跨多个算子的可扩展神经算子学习建立了统一的理论与实践基础。