In recent years, with the rapid development of deep learning and natural language processing technologies, semantic communication has become a topic of great interest in the field of communication. Although existing deep learning-based semantic communication approaches have shown many advantages, they still do not make sufficient use of prior knowledge. Moreover, most existing semantic communication methods focus on the semantic encoding at the transmitter side, while we believe that the semantic decoding capability of the receiver should also be concerned. In this paper, we propose a knowledge enhanced semantic communication framework in which the receiver can more actively utilize the facts in the knowledge base for semantic reasoning and decoding, on the basis of only affecting the parameters rather than the structure of the neural networks at the transmitter side. Specifically, we design a transformer-based knowledge extractor to find relevant factual triples for the received noisy signal. Extensive simulation results on the WebNLG dataset demonstrate that the proposed receiver yields superior performance on top of the knowledge graph enhanced decoding.


翻译:近年来,随着深度学习和自然语言处理技术的快速发展,语义通信已成为通信领域的一个热门话题。尽管现有的基于深度学习的语义通信方法已经表现出许多优点,但它们仍然没有充分利用先前的知识。此外,大多数现有的语义通信方法侧重于发送方的语义编码,而我们认为接收方的语义解码能力也应该受到关注。在本文中,我们提出了一个知识增强的语义通信框架,其中接收器可以更积极地利用知识库中的事实进行语义推理和解码,而仅仅影响参数而不是发送方神经网络的结构。具体而言,我们设计了一个基于transformer的知识提取器,以找到与接收到的噪声信号相关的事实三元组。在WebNLG数据集上的大量模拟结果表明,所提出的接收器在知识图增强解码的基础上具有优异的性能。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2021年2月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 使用变分推理做KBQA
开放知识图谱
13+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2021年10月1日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2021年2月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 使用变分推理做KBQA
开放知识图谱
13+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员