In recent years, monitoring the world wide area with satellite images has been emerged as an important issue. Site monitoring task can be divided into two independent tasks; 1) Change Detection and 2) Anomaly Event Detection. Unlike to change detection research is actively conducted based on the numerous datasets(\eg LEVIR-CD, WHU-CD, S2Looking, xView2 and etc...) to meet up the expectations of industries or governments, research on AI models for detecting anomaly events is passively and rarely conducted. In this paper, we introduce a novel satellite imagery dataset(AED-RS) for detecting anomaly events on the open public places. AED-RS Dataset contains satellite images of normal and abnormal situations of 8 open public places from all over the world. Each places are labeled with different criteria based on the difference of characteristics of each places. With this dataset, we introduce a baseline model for our dataset TB-FLOW, which can be trained in weakly-supervised manner and shows reasonable performance on the AED-RS Dataset compared with the other NF(Normalizing-Flow) based anomaly detection models. Our dataset and code will be publicly open in \url{https://github.com/SIAnalytics/RS_AnomalyDetection.git}.
翻译:聚焦还是不聚焦:基于卫星图像的公共场所异常事件检测基准
研究论文摘要:
本文的研究背景是近年来,使用卫星图像进行全球范围内的监控变得越来越重要。对场所进行监控的任务可以分为两个独立的任务:1)变化检测和2)异常事件检测。与变化检测研究基于众多数据集(例如 LEVIR-CD、WHU-CD、S2Looking、xView2等)积极开展以满足工业或政府的期望相比,研究用于检测异常事件的AI模型相对较被动和很少开展。本文介绍了一种新的卫星图像数据集(AED-RS),用于检测公共场所中的异常事件。AED-RS数据集包含世界各地8个公共场所的正常和异常情况的卫星图像。每个场所都基于其特点差异标记有不同的标准。利用此数据集,我们介绍了基于该数据集的基准模型TB-FLOW,该模型可以以弱监督的方式进行训练,并且相对于其他基于NF(规范化流)的异常检测模型在AED-RS数据集上显示出合理的性能。我们的数据集和代码将在\url{https://github.com/SIAnalytics/RS_AnomalyDetection.git}上公开。