Existing physical cloth simulators suffer from expensive computation and difficulties in tuning mechanical parameters to get desired wrinkling behaviors. Data-driven methods provide an alternative solution. It typically synthesizes cloth animation at a much lower computational cost, and also creates wrinkling effects that highly resemble the much controllable training data. In this paper we propose a deep learning based method for synthesizing cloth animation with high resolution meshes. To do this we first create a dataset for training: a pair of low and high resolution meshes are simulated and their motions are synchronized. As a result the two meshes exhibit similar large-scale deformation but different small wrinkles. Each simulated mesh pair are then converted into a pair of low and high resolution "images" (a 2D array of samples), with each sample can be interpreted as any of three features: the displacement, the normal and the velocity. With these image pairs, we design a multi-feature super-resolution (MFSR) network that jointly train an upsampling synthesizer for the three features. The MFSR architecture consists of two key components: a sharing module that takes multiple features as input to learn low-level representations from corresponding super-resolution tasks simultaneously; and task-specific modules focusing on various high-level semantics. Frame-to-frame consistency is well maintained thanks to the proposed kinematics-based loss function. Our method achieves realistic results at high frame rates: 12-14 times faster than traditional physical simulation. We demonstrate the performance of our method with various experimental scenes, including a dressed character with sophisticated collisions.


翻译:现有物理布模拟器存在昂贵的计算方法, 并且难以调整机械参数以获得理想的皱纹行为。 数据驱动方法提供了替代解决方案。 它通常以低得多的计算成本合成布布动动画, 并产生与可控制的培训数据非常相似的皱纹效果。 在本文中, 我们提出一种深层次的学习基础方法, 将布动动画与高分辨率的间距合成。 为了做到这一点, 我们首先为培训创建一个数据集: 模拟一对低分辨率和高分辨率的中间线, 并同步它们的动作。 结果, 两件模版的模版显示相似的大规模变形, 但却是不同的物理变形。 每对模版的模拟模版通常会转换成一对低和高分辨率的“ 模拟” ( 2D 样组), 每个样本都可以被解释为任何三种特征的组合: 变形、 普通和速度的组合, 我们设计一个基于多功能的超分辨率超分辨率超分辨率网络, 共同为三个特征的模拟合成器。 12个MFSR结构结构结构由两个关键的缩缩缩缩缩缩缩结构组成,, 以学习高层次的缩缩缩缩缩缩结构, 。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年3月16日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员