We study the problem of network robustness under consensus dynamics. We first show that the consensus interdiction problem (CIP), in which the goal is to maximize the convergence time of consensus dynamics subject to removing limited network edges, can be cast as an effective resistance interdiction problem (ERIP). We then show that ERIP is strongly NP-hard, even for bipartite graphs of diameter three with fixed source/sink edges. We establish the same hardness result for the CIP, hence correcting some claims in the existing literature. We then show that both ERIP and CIP do not admit a polynomial-time approximation scheme, and moreover, they cannot be approximated up to a (nearly) polynomial factor assuming exponential time hypothesis. Finally, using a quadratic program formulation, we devise a polynomial-time $n^4$-approximation algorithm for ERIP that only depends on the number of nodes $n$ and is independent of the size of edge resistances. We also develop an iterative heuristic approximation algorithm to find a local optimum for the CIP.
翻译:我们首先在共识动态下研究网络的稳健性问题。 我们首先表明,共识阻截问题(CIP)的目标是在消除有限的网络边缘的前提下最大限度地缩短共识动态的趋同时间,因此可以作为一种有效的阻截问题(ERIP ) 。 我们然后表明,ERIP 是非常硬的NP-硬的,即使是直径3的双方图,有固定源/汇边。 我们为CIP 建立同样的硬性结果, 从而纠正现有文献中的某些主张。 然后我们表明,ERIP 和 CIP 都不接受多元时近似法, 而且它们不能近似于( 近近似于) 多数值因素, 假设指数时间假设。 最后,我们用四边方案配方, 为ERIP 设计一个只取决于点数( $ 4 $ ) 的多米- 适应算法, 仅取决于点数, 并且不依赖边阻力的大小。 我们还开发了一个迭代性超度近算算法, 为 CIP 找到一个本地的最佳方法 。