Transferability of adversarial examples is of central importance for attacking an unknown model, which facilitates adversarial attacks in more practical scenarios, e.g., black-box attacks. Existing transferable attacks tend to craft adversarial examples by indiscriminately distorting features to degrade prediction accuracy in a source model without aware of intrinsic features of objects in the images. We argue that such brute-force degradation would introduce model-specific local optimum into adversarial examples, thus limiting the transferability. By contrast, we propose the Feature Importance-aware Attack (FIA), which disrupts important object-aware features that dominate model decisions consistently. More specifically, we obtain feature importance by introducing the aggregate gradient, which averages the gradients with respect to feature maps of the source model, computed on a batch of random transforms of the original clean image. The gradients will be highly correlated to objects of interest, and such correlation presents invariance across different models. Besides, the random transforms will preserve intrinsic features of objects and suppress model-specific information. Finally, the feature importance guides to search for adversarial examples towards disrupting critical features, achieving stronger transferability. Extensive experimental evaluation demonstrates the effectiveness and superior performance of the proposed FIA, i.e., improving the success rate by 9.5% against normally trained models and 12.8% against defense models as compared to the state-of-the-art transferable attacks. Code is available at: https://github.com/hcguoO0/FIA


翻译:对抗性实例的可转让性对于攻击一种在更实际的情况下,例如黑箱袭击,有利于对抗性攻击的未知模式至关重要,这种模式有助于在更实际的情况下(例如黑箱袭击)进行对抗性攻击。现有的可转让袭击往往通过不加区别地扭曲特征来形成对抗性例子,从而降低源模型预测的准确性,而没有意识到图像中物体的内在特征。我们争辩说,这种野蛮力量退化将引入针对特定模型的当地最佳范例,从而限制可转让性。相反,我们建议采用“特异性重要性觉攻击(FIA) ”,这种攻击破坏了在更为实际情况下主宰示范性决定的重要对象认知特征。更具体地说,我们通过引入总梯度获得显著的重要性,该梯度在源模型特征图上平均梯度的梯度,而原始清洁图像的随机变式计算。这些梯度与对象高度相关,这种关联性表明不同模型的不易转让性。此外,随机变形将保留对象的内在特征,抑制特定模型的信息。最后,通过特征指南搜索关键特征,实现更强大的可转让性。 广泛的实验性评估AA-通常比12号的防御性模型,改进FIA/CA/CRIA的成功率。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
13+阅读 · 2019年11月14日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员