We study fault-tolerant consensus in a variant of the synchronous message passing model, where, in each round, every node can choose to be awake or asleep. This is known as the sleeping model (Chatterjee, Gmyr, Pandurangan PODC 2020) and defines the awake complexity (also called \emph{energy complexity}), which measures the maximum number of rounds that any node is awake throughout the execution. Only awake nodes can send and receive messages in a given round and all messages sent to sleeping nodes are lost. We present new deterministic consensus algorithms that tolerate up to $f<n$ crash failures, where $n$ is the number of nodes. Our algorithms match the optimal time complexity lower bound of $f+1$ rounds. For multi-value consensus, where the input values are chosen from some possibly large set, we achieve an energy complexity of ${O}(\lceil f^2 / n \rceil)$ rounds, whereas for binary consensus, we show that ${O}(\lceil f / \sqrt{n} \rceil)$ rounds are possible.
翻译:本文研究同步消息传递模型变体中的容错共识问题,其中每轮每个节点可选择处于唤醒或休眠状态。该模型被称为休眠模型(Chatterjee、Gmyr、Pandurangan PODC 2020),其定义了唤醒复杂度(亦称能量复杂度),用于衡量执行过程中任意节点处于唤醒状态的最大轮数。在给定轮次中,仅唤醒节点可收发消息,所有发往休眠节点的消息均会丢失。我们提出了新的确定性共识算法,可容忍最多 $f<n$ 个崩溃故障,其中 $n$ 为节点总数。该算法达到了 $f+1$ 轮的最优时间复杂度下界。对于多值共识(输入值取自可能较大的集合),我们实现了 ${O}(\lceil f^2 / n \rceil)$ 轮的能量复杂度;而对于二元共识,我们证明 ${O}(\lceil f / \sqrt{n} \rceil)$ 轮复杂度是可达的。