Marking-level high-definition maps (HD maps) are of great significance for autonomous vehicles, especially in large-scale, appearance-changing scenarios where autonomous vehicles rely on markings for localization and lanes for safe driving. In this paper, we propose a highly feasible framework for automatically building a marking-level HD map using a simple sensor setup (one or more monocular cameras). We optimize the position of the marking corners to fit the result of marking segmentation and simultaneously optimize the inverse perspective mapping (IPM) matrix of the corresponding camera to obtain an accurate transformation from the front view image to the bird's-eye view (BEV). In the quantitative evaluation, the built HD map almost attains centimeter-level accuracy. The accuracy of the optimized IPM matrix is similar to that of the manual calibration. The method can also be generalized to build HD maps in a broader sense by increasing the types of recognizable markings.
翻译:标志性高清晰度地图(HD地图)对于自主车辆具有重大意义,特别是在大型的、表面变化的情景中,自主车辆依赖定位标志和安全驾驶的车道。在本文件中,我们提出了一个非常可行的框架,以便利用简单的传感器设置(一个或一个以上的单筒照相机)自动绘制标志性高清晰度地图。我们优化了标记角的位置,以适应标记分块的结果,同时优化了相应的相机的反视角绘图矩阵,从前视图像到鸟眼视图(BEV)的准确转换。在定量评估中,所建的HD地图几乎达到厘米的准确度。优化的IPM矩阵的准确性类似于手动校准的矩阵。我们还可以推广这种方法,通过增加可识别的标识类型,在更广泛的意义上建立HD地图。