Many downstream NLP tasks have shown significant improvement through continual pre-training, transfer learning and multi-task learning. State-of-the-art approaches in Word Sense Disambiguation today benefit from some of these approaches in conjunction with information sources such as semantic relationships and gloss definitions contained within WordNet. Our work builds upon these systems and uses data augmentation along with extensive pre-training on various different NLP tasks and datasets. Our transfer learning and augmentation pipeline achieves state-of-the-art single model performance in WSD and is at par with the best ensemble results.


翻译:许多下游国家劳工政策任务通过持续的培训前准备、转让学习和多任务学习取得了显著的改进,Word Sense Dismendation中最先进的方法如今与WordNet中包含的语义关系和光谱定义等信息来源一起受益于其中一些方法,我们的工作以这些系统为基础,利用数据扩充,同时对各种国家劳工政策任务和数据集进行广泛的预先培训。我们的转让学习和增强管道在WSD中取得了最先进的单一模型性能,与最佳共同结果相同。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
5+阅读 · 2017年10月27日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员