Chemical kinetics and reaction engineering consists of the phenomenological framework for the disentanglement of reaction mechanisms, optimization of reaction performance and the rational design of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions to solve ordinary differential equations (ODEs) constrained by differential algebraic equations (DAEs) that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical description and classification of reaction networks, types of elementary reaction, and chemical species. Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model parameters in a regularized multi-objective optimization setting leads to the solution of the inverse problem through the estimation of kinetic parameters from synthetic experimental data. We analyze a set of scenarios to establish the extent to which kinetic parameters can be retrieved from transient kinetic data, and assess the robustness of the methodology with respect to statistical noise. This approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.
翻译:化学动能学和反应工程由反应机制脱钩、反应性能优化和化学过程合理设计等分解的神经元学框架组成。在这里,我们利用进取前人工神经网络作为基础功能,以解决受描述微动动模型的不同代数方程式制约的普通差异方程式(DEDS)。我们为反应网络、基本反应类型和化学物种的数学描述和分类提供了一个代数框架。在这个框架内,我们证明在常规化多目标优化环境中同时培训神经网和动动能模型参数,通过估计合成实验数据的动能参数,可以解决反向问题。我们分析一套设想方案,以确定动能参数在多大程度上可从具有瞬变动能的动能数据中检索出来,并评估该方法在统计噪音方面的稳健性。这种反动能内分解方法有助于根据瞬态数据对反应机制进行解析。