The reconfigurable intelligent surface (RIS) has received a lot of interest because of its capacity to reconfigure the wireless communication environment in a cost- and energy-efficient way. However, the realistic power consumption modeling and measurement validation of RIS has received far too little attention. Therefore, in this work, we model the power consumption of RIS and conduct measurement validations using various RISs to fill this vacancy. Firstly, we propose a practical power consumption model of RIS. The RIS hardware is divided into three basic parts: the FPGA control board, the drive circuits, and the RIS unit cells. The power consumption of the first two parts is modeled as $P_{\text {static}}$ and that of the last part is modeled as $P_{\text {units}}$. Expressions of $P_{\text {static}}$ and $P_{\text {units}}$ vary amongst different types of RISs. Secondly, we conduct measurements on various RISs to validate the proposed model. Five different RISs including the PIN diode, varactor diode, and RF switch types are measured, and measurement results validate the generality and applicability of the proposed power consumption model of RIS. Finally, we summarize the measurement results and discuss the approaches to achieve the low-power-consumption design of RIS-assisted wireless communication systems.
翻译:暂无翻译