The variable-order fractional Laplacian plays an important role in the study of heterogeneous systems. In this paper, we propose the first numerical methods for the variable-order Laplacian $(-\Delta)^{\alpha({\bf x})/2}$ with $0 < \alpha({\bf x}) \le 2$, which will also be referred as the variable-order fractional Laplacian if $\alpha({\bf x})$ is strictly less than 2. We present a class of hypergeometric functions whose variable-order Laplacian can be analytically expressed. Building on these analytical results, we design the meshfree methods based on globally supported radial basis functions (RBFs), including Gaussian, generalized inverse multiquadric, and Bessel-type RBFs, to approximate the variable-order Laplacian $(-\Delta)^{\alpha({\bf x})/2}$. Our meshfree methods integrate the advantages of both pseudo-differential and hypersingular integral forms of the variable-order fractional Laplacian, and thus avoid numerically approximating the hypersingular integral. Moreover, our methods are simple and flexible of domain geometry, and their computer implementation remains the same for any dimension $d \ge 1$. Compared to finite difference methods, our methods can achieve a desired accuracy with much fewer points. This fact makes our method much attractive for problems involving variable-order fractional Laplacian where the number of points required is a critical cost. We then apply our method to study solution behaviors of variable-order fractional PDEs arising in different fields, including transition of waves between classical and fractional media, and coexistence of anomalous and normal diffusion in both diffusion equation and the Allen-Cahn equation. These results would provide insights for further understanding and applications of variable-order fractional derivatives.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员