In the search for knowledge graph embeddings that could capture ontological knowledge, geometric models of existential rules have been recently introduced. It has been shown that convex geometric regions capture the so-called quasi-chained rules. Attributed description logics (DL) have been defined to bridge the gap between DL languages and knowledge graphs, whose facts often come with various kinds of annotations that may need to be taken into account for reasoning. In particular, temporally attributed DLs are enriched by specific attributes whose semantics allows for some temporal reasoning. Considering that geometric models and (temporally) attributed DLs are promising tools designed for knowledge graphs, this paper investigates their compatibility, focusing on the attributed version of a Horn dialect of the DL-Lite family. We first adapt the definition of geometric models to attributed DLs and show that every satisfiable ontology has a convex geometric model. Our second contribution is a study of the impact of temporal attributes. We show that a temporally attributed DL may not have a convex geometric model in general but we can recover geometric satisfiability by imposing some restrictions on the use of the temporal attributes.


翻译:在寻找能够捕捉本体知识的知识图嵌入器时,最近引入了生存规则的几何模型,并显示Convex几何区域捕捉了所谓的准链式规则。定性描述逻辑(DL)被确定为缩小DL语言和知识图之间的差距,其事实往往带有各种说明,可能需要在推理中予以考虑。特别是,时间归属DL由特定属性丰富,其语义学允许某种时间推理。考虑到几何模型和(暂时)分辨的DL是设计用于知识图的有希望的工具,本文调查了它们的兼容性,重点是DL-Lite家族的合恩方方言的配方言。我们首先将几何体模型的定义调整为DLs,并表明每个可坐态的Otlog学都有一个Convex几何模型。我们的第二个贡献是研究时间属性的影响。我们显示,按时间归属的DL可能没有一般的等分数度模型,但我们可以通过测量时空性来恢复某些测量性限制。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年8月2日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
7+阅读 · 2019年6月20日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员