Streamflow forecasts are critical to guide water resource management, mitigate drought and flood effects, and develop climate-smart infrastructure and governance. Many global regions, however, have limited streamflow observations to guide evidence-based management strategies. In this paper, we propose an attention-based domain adaptation streamflow forecaster for data-sparse regions. Our approach leverages the hydrological characteristics of a data-rich source domain to induce effective 24hr lead-time streamflow prediction in a data-constrained target domain. Specifically, we employ a deep-learning framework leveraging domain adaptation techniques to simultaneously train streamflow predictions and discern between both domains using an adversarial method. Experiments against baseline cross-domain forecasting models show improved performance for 24hr lead-time streamflow forecasting.
翻译:翻译后的摘要:
水文流量预测对指导水资源管理、缓解干旱和洪水影响以及开发气候智能型基础设施和治理策略至关重要。然而,全球许多地区缺乏用于指导基于事实的管理策略的水文流量观测数据。本文提出了一种基于注意力机制的领域自适应流量预测器,可用于数据稀缺区域。我们的方法利用数据丰富的源领域的水文特征,通过采用深度学习框架和领域自适应技术来同时训练流量预测模型以及通过对抗方法区分两个领域。与基准跨领域预测模型相比,实验结果表明可以改进24小时领先时间的流量预测性能。