In this paper, we lay out a novel model of neuroplasticity in the form of a horizontal-vertical integration model of neural processing. We believe a new approach to neural modeling will benefit the 3rd wave of AI. The horizontal plane consists of an adaptive network of neurons connected by transmission links which generates spatio-temporal spike patterns. This fits with standard computational neuroscience approaches. Additionally for each individual neuron there is a vertical part consisting of internal adaptive parameters steering the external membrane-expressed parameters which are involved in neural transmission. Each neuron has a vertical modular system of parameters corresponding to (a) external parameters at the membrane layer, divided into compartments (spines, boutons) (b) internal parameters in the submembrane zone and the cytoplasm with its protein signaling network and (c) core parameters in the nucleus for genetic and epigenetic information. In such models, each node (=neuron) in the horizontal network has its own internal memory. Neural transmission and information storage are systematically separated, an important conceptual advance over synaptic weight models. We discuss the membrane-based (external) filtering and selection of outside signals for processing vs. signal loss by fast fluctuations and the neuron-internal computing strategies from intracellular protein signaling to the nucleus as the core system. We want to show that the individual neuron has an important role in the computation of signals and that many assumptions derived from the synaptic weight adjustment hypothesis of memory may not hold in a real brain. Not every transmission event leaves a trace and the neuron is a self-programming device, rather than passively determined by current input. Ultimately we strive to build a flexible memory system that processes facts and events automatically.
翻译:在本文中, 我们以神经神经处理横向垂直整合模型的形式, 展示了新型神经塑料模型。 我们认为神经模型的新方法将有利于AI的第三波。 水平平面由通过传输链接连接的神经元适应性网络组成, 这种传输链将产生晶状- 时空突触模式。 这符合标准的计算神经科学方法。 此外, 对于每个神经元来说, 有一个垂直部分, 包括内部适应参数, 指导神经神经传输所涉及的外部膜表达的参数。 每个神经元都有一个垂直模块化参数系统, 与(a) 脑膜层的外部参数相对应, 分为隔开来。 (b) 水平平面神经元区域的内部参数及其蛋白信号信号网络核心的核心参数。 在这种模型中, 水平网络中每个节点( 表示内膜显示的内脏表达和内脏内脏表达的内脏表达法, 其内部内脏传递和内脏的内脏反应系统都是由内脏的内脏反应和内脏选择的。 我们讨论的是, 内部的内脏传输和信息存储和内存系统, 一个重要的概念性系统比内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存, 一个内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 的内存, 的内存, 的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内