In this paper, we lay out a novel model of neuroplasticity in the form of a horizontal-vertical integration model of neural processing. We believe a new approach to neural modeling will benefit the 3rd wave of AI. The horizontal plane consists of an adaptive network of neurons connected by transmission links which generates spatio-temporal spike patterns. This fits with standard computational neuroscience approaches. Additionally for each individual neuron there is a vertical part consisting of internal adaptive parameters steering the external membrane-expressed parameters which are involved in neural transmission. Each neuron has a vertical modular system of parameters corresponding to (a) external parameters at the membrane layer, divided into compartments (spines, boutons) (b) internal parameters in the submembrane zone and the cytoplasm with its protein signaling network and (c) core parameters in the nucleus for genetic and epigenetic information. In such models, each node (=neuron) in the horizontal network has its own internal memory. Neural transmission and information storage are systematically separated, an important conceptual advance over synaptic weight models. We discuss the membrane-based (external) filtering and selection of outside signals for processing vs. signal loss by fast fluctuations and the neuron-internal computing strategies from intracellular protein signaling to the nucleus as the core system. We want to show that the individual neuron has an important role in the computation of signals and that many assumptions derived from the synaptic weight adjustment hypothesis of memory may not hold in a real brain. Not every transmission event leaves a trace and the neuron is a self-programming device, rather than passively determined by current input. Ultimately we strive to build a flexible memory system that processes facts and events automatically.


翻译:在本文中, 我们以神经神经处理横向垂直整合模型的形式, 展示了新型神经塑料模型。 我们认为神经模型的新方法将有利于AI的第三波。 水平平面由通过传输链接连接的神经元适应性网络组成, 这种传输链将产生晶状- 时空突触模式。 这符合标准的计算神经科学方法。 此外, 对于每个神经元来说, 有一个垂直部分, 包括内部适应参数, 指导神经神经传输所涉及的外部膜表达的参数。 每个神经元都有一个垂直模块化参数系统, 与(a) 脑膜层的外部参数相对应, 分为隔开来。 (b) 水平平面神经元区域的内部参数及其蛋白信号信号网络核心的核心参数。 在这种模型中, 水平网络中每个节点( 表示内膜显示的内脏表达和内脏内脏表达的内脏表达法, 其内部内脏传递和内脏的内脏反应系统都是由内脏的内脏反应和内脏选择的。 我们讨论的是, 内部的内脏传输和信息存储和内存系统, 一个重要的概念性系统比内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存, 一个内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 一个内存的内存的内存的内存的内存的内存的内存的内存的内存的内存, 的内存, 的内存, 的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员