We characterize trade-offs between the end-to-end communication delay and the energy in urban vehicular communications with infrastructure assistance. Our study exploits the self-similarity of the location of communication entities in cities by modeling them with an innovative model called "hyperfractal". We show that the hyperfractal model can be extended to incorporate road-side infrastructure and provide stochastic geometry tools to allow a rigorous analysis. We compute theoretical bounds for the end-to-end communication hop count considering two different energy-minimizing goals: either total accumulated energy or maximum energy per node. We prove that the hop count for an end-to-end transmission is bounded by $O(n^{1-\alpha/(d_F-1)})$ where $\alpha<1$ and $d_F>2$ is the fractal dimension of the mobile nodes process. This proves that for both constraints the energy decreases as we allow choosing routing paths of higher length. The asymptotic limit of the energy becomes significantly small when the number of nodes becomes asymptotically large. A lower bound on the network throughput capacity with constraints on path energy is also given. We show that our model fits real deployments where open data sets are available. The results are confirmed through simulations using different fractal dimensions in a Matlab simulator.


翻译:我们的研究利用城市通信实体所在地的自我差异性,以名为“超分形”的创新模型为模型进行模拟。我们显示超分形模型可以扩展以纳入路边基础设施,并提供随机几何工具以进行严格分析。我们计算端至端通信延迟与城市车辆通信能量之间的权衡。我们计算端至端通信跳量的理论界限,考虑两个不同的能量最小化目标:即累计总能量或每个节点的最大能量。我们证明,终端至端传输的跳数由美元(n ⁇ 1-alpha/(d_F-1)})和美元($/alpha<1美元和$d_F>2美元)捆绑在一起,而美元是移动节点过程的分数。这证明,考虑到两个不同的节点可以选择更长的路线,能源下降的理论界限会受到制约。当节点的节点数变得非常小时,当节点数变得为节点数时,终端对端点的能量限制就会变得非常小。在网络的模型中,我们所展示的虚拟路路况也会显示。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员