This work presents and experimentally test the framework used by our context-aware, distributed team of small Unmanned Aerial Systems (SUAS) capable of operating in real-time, in an autonomous fashion, and under constrained communications. Our framework relies on three layered approach: (1) Operational layer, where fast temporal and narrow spatial decisions are made; (2) Tactical Layer, where temporal and spatial decisions are made for a team of agents; and (3) Strategical Layer, where slow temporal and wide spatial decisions are made for the team of agents. These three layers are coordinated by an ad-hoc, software-defined communications network, which ensures sparse, but timely delivery of messages amongst groups and teams of agents at each layer even under constrained communications. Experimental results are presented for a team of 10 small unmanned aerial systems tasked with searching and monitoring a person in an open area. At the operational layer, our use case presents an agent autonomously performing searching, detection, localization, classification, identification, tracking, and following of the person, while avoiding malicious collisions. At the tactical layer, our experimental use case presents the cooperative interaction of a group of multiple agents that enable the monitoring of the targeted person over a wider spatial and temporal regions. At the strategic layer, our use case involves the detection of complex behaviors-i.e. the person being followed enters a car and runs away, or the person being followed exits the car and runs away-that requires strategic responses to successfully accomplish the mission.


翻译:这项工作展示并实验性测试了我们的背景觉悟、分布的、能够实时、自主和在受限制的通信下运作的小型无人航空系统小组(SUAS)所使用的框架。我们的框架依赖三层方法:(1) 操作层,负责迅速作出时间和狭小的空间决定;(2) 战术层,为一组代理作出时间和空间决定;(3) 战略层,为一组代理作出缓慢的时间和广泛的空间决定。这三层由一个临时的、软件界定的通信网络协调,该网络确保每个层的代理团体和团队之间信息分散而及时传递,甚至在通信受限制的情况下也是如此。我们的框架依赖于三个层:1) 操作层,该操作层是一个由10个小型无人驾驶航空系统组成的团队,负责在开放地区搜索和监测一个人;(2) 战术层,我们的使用案例是一个自主进行搜索、检测、本地化、分类、识别、跟踪和跟踪的代理,同时避免恶意碰撞。在战术层,我们的实验使用案例展示了多个代理小组的合作互动,在每一个层次之间,在战略层上运行,进入了对目标人群进行监控,进入了一个空间层。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员