The k-Clique problem is a canonical hard problem in parameterized complexity. In this paper, we study the parameterized complexity of approximating the k-Clique problem where an integer k and a graph G on n vertices are given as input, and the goal is to find a clique of size at least k/F(k) whenever the graph G has a clique of size k. When such an algorithm runs in time T(k)poly(n) (i.e., FPT-time) for some computable function T, it is said to be an F(k)-FPT-approximation algorithm for the k-Clique problem. Although, the non-existence of an F(k)-FPT-approximation algorithm for any computable sublinear function F is known under gap-ETH [Chalermsook et al., FOCS 2017], it has remained a long standing open problem to prove the same inapproximability result under the more standard and weaker assumption, W[1]$\neq$FPT. In a recent breakthrough, Lin [STOC 2021] ruled out constant factor (i.e., F(k)=O(1)) FPT-approximation algorithms under W[1]$\neq$FPT. In this paper, we improve this inapproximability result (under the same assumption) to rule out every $F(k)=k^{1/H(k)}$ factor FPT-approximation algorithm for any increasing computable function H (for example $H(k)=\log^\ast k$). Our main technical contribution is introducing list decoding of Hadamard codes over large prime fields into the proof framework of Lin.


翻译:k- Clique 问题是一个参数化复杂度的卡通硬质问题。 在本文中, 我们研究了 k- Clique 问题相似的参数复杂度, 其中输入了整数 k 和 n 脊椎上的图形 G, 目标是在图形 G 有 k( k) 的分级时找到至少 k/ F( k) 大小的分级 。 当这种算法在时间 T( k) pol( 美元)( 即 FPT- time) 运行时, 对于某些可折数函数 T 来说, 据说它是 k- Clique 问题 的 F( k)- FPT 匹配算法的参数的参数复杂性。 虽然对于任何可比较的子线性函数 F( k), F( Chalem) 和 k. (FCS 2017) 的分级值, 当这种算法值在更标准、 较弱的假设下, F- Flick 和 硬性规则中, W[1] O= Plax 的常数 内, 硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性能( O) 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【硬核书】树与网络上的概率,716页pdf
专知
23+阅读 · 2021年12月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
【硬核书】树与网络上的概率,716页pdf
专知
23+阅读 · 2021年12月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员