Transformer based language models have led to impressive results across all domains in Natural Language Processing. Pretraining these models on language modeling tasks and finetuning them on downstream tasks such as Text Classification, Question Answering and Neural Machine Translation has consistently shown exemplary results. In this work, we propose a Multitask Finetuning methodology which combines the Bilingual Machine Translation task with an auxiliary Causal Language Modeling task to improve performance on the former task on Indian Languages. We conduct an empirical study on three language pairs, Marathi-Hindi, Marathi-English and Hindi-English, where we compare the multitask finetuning approach to the standard finetuning approach, for which we use the mBART50 model. Our study indicates that the multitask finetuning method could be a better technique than standard finetuning, and could improve Bilingual Machine Translation across language pairs.


翻译:基于变换的语文模型在自然语言处理的所有领域都取得了令人印象深刻的成果,在语言模拟任务方面对这些模型进行预先培训,并在下游任务(如文本分类、问答和神经机器翻译)上对其进行微调,这些模型始终显示出堪称典范的结果。在这项工作中,我们提出了多任务微调方法,将双语机器翻译任务与辅助性因果语言模型任务结合起来,以提高以前印度语言任务的业绩。我们就三种语文对(Marathi-Hindi、Marathi-Engli和Hindi-Engli)进行了实证研究,将多任务微调方法与标准微调方法(我们为此使用 mBART50模型)进行比较。我们的研究显示,多任务微调方法比标准微调更好,可以改进跨语言对口双语机器翻译。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
专知会员服务
32+阅读 · 2021年10月8日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Survey of Low-Resource Machine Translation
Arxiv
0+阅读 · 2022年2月7日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员