Denote by $\Delta_M$ the $M$-dimensional simplex. A map $f\colon \Delta_M\to\mathbb R^d$ is an almost $r$-embedding if $f\sigma_1\cap\ldots\cap f\sigma_r=\emptyset$ whenever $\sigma_1,\ldots,\sigma_r$ are pairwise disjoint faces. A counterexample to the topological Tverberg conjecture asserts that if $r$ is not a prime power and $d\ge2r+1$, then there is an almost $r$-embedding $\Delta_{(d+1)(r-1)}\to\mathbb R^d$. This was improved by Blagojevi\'c-Frick-Ziegler using a simple construction of higher-dimensional counterexamples by taking $k$-fold join power of lower-dimensional ones. We improve this further (for $d$ large compared to $r$): If $r$ is not a prime power and $N:=(d+1)r-r\Big\lceil\dfrac{d+2}{r+1}\Big\rceil-2$, then there is an almost $r$-embedding $\Delta_N\to\mathbb R^d$. For the $r$-fold van Kampen-Flores conjecture we also produce counterexamples which are stronger than previously known. Our proof is based on generalizations of the Mabillard-Wagner theorem on construction of almost $r$-embeddings from equivariant maps, and of the \"Ozaydin theorem on existence of equivariant maps.
翻译:由 $Delta_ m 元元表示 $ m 元元简单。 一张地图 $f\ colon $\ delta_ M\ to\ mathbr R 美元, 如果$gma_ 1\ cap\ cap\ cap f sgma_ r\\\\\\ capfr\ gma_ r\\\\\\ pr\\\\\\\\\\\ gma_ 美元, 只要$\ sgma_ 美元是双向式的对立面, 与表层图示的反比方表示, 如果美元不是正价, 美元值2r+1美元, 那么就几乎是美元, 美元=美元=美元=美元=美元=美元=美元=平价。 如果美元= 美元=美元=平价=美元=平价, 美元= 美元=平价=一美元=平价。</s>