Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.
翻译:作为多阶段建议系统最后阶段的重新排序,将初始列表改进以尽量扩大总体效用。随着多媒体和用户界面设计的发展,建议页面已演变成多列表风格。单独对不同列表使用传统的列表级重新排序方法忽略了不同列表之间的相互作用和不同页面格式的影响,从而产生亚优度的重新排序性能。此外,仅仅对所有列表应用共享网络无法捕捉不同列表中用户行为的共性和区别。为此,我们提议绘制鸟类对\ textbf{页面级重新排序的视视视图,并设计一个新的页面级重排模式。我们引入一个等级分级的双向关注模块,以提取个性化的列表内部和列表间互动。一个空间尺度化的注意网络旨在将空间关系整合到对双向项目的影响中,这些影响明确模拟了页面格式。多级混合专家模块进一步用于捕捉不同列表之间用户行为的共性和差异。关于公共数据设置的大规模实验和现有资产型数据库显示显著的模型。