Cryo-electron microscopy (cryo-EM) is unique among tools in structural biology in its ability to image large, dynamic protein complexes. Key to this ability is image processing algorithms for heterogeneous cryo-EM reconstruction, including recent deep learning-based approaches. The state-of-the-art method cryoDRGN uses a Variational Autoencoder (VAE) framework to learn a continuous distribution of protein structures from single particle cryo-EM imaging data. While cryoDRGN can model complex structural motions, the Gaussian prior distribution of the VAE fails to match the aggregate approximate posterior, which prevents generative sampling of structures especially for multi-modal distributions (e.g. compositional heterogeneity). Here, we train a diffusion model as an expressive, learnable prior in the cryoDRGN framework. Our approach learns a high-quality generative model over molecular conformations directly from cryo-EM imaging data. We show the ability to sample from the model on two synthetic and two real datasets, where samples accurately follow the data distribution unlike samples from the VAE prior distribution. We also demonstrate how the diffusion model prior can be leveraged for fast latent space traversal and interpolation between states of interest. By learning an accurate model of the data distribution, our method unlocks tools in generative modeling, sampling, and distribution analysis for heterogeneous cryo-EM ensembles.
翻译:在结构生物学工具中,冷冻-电子显微镜(cryo-EM)在结构生物学工具中具有独特性,能够映射大型、动态蛋白综合体。这种能力的关键在于对各种冷冻-EM重建(包括最近的深层次学习方法)进行图像处理算法,包括最近的深层学习方法。最先进的冷冻-DRGN 方法冷冻-冷冻-冷冻-EM成像(VAE)框架用于从单个粒子冷冻-冷冻-EM成像数据中学习蛋白结构的连续分布。虽然冷冻DRDRGN可以模拟复杂的结构运动,但VAE先前的分布无法匹配总近似近似的近似近光谱,从而无法对结构进行基因化取样,特别是防止多模式分布的结构(例如,组成性异性)进行基因抽样取样。在这里,我们将一个扩散模型模型作为直观的传播模型,在冷冻-EM成像数据中学习一个高品质的基因化模型模型,我们从两个真实的数据集中可以进行取样,在模型中精确地按照模型进行数据分布方法,我们之前的精确地分析,以便从变现变式分析,我们能分析,可以研究。