This manuscript investigates the problem of locational complexity, a type of complexity that emanates from a companys territorial strategy. Using an entropy-based measure for supply chain structural complexity ( pars-complexity), we develop a theoretical framework for analysing the effects of locational complexity on the profitability of service/manufacturing networks. The proposed model is used to shed light on the reasons why network restructuring strategies may result ineffective at reducing complexity-related costs. Our contribution is three-fold. First, we develop a novel mathematical formulation of a facility location problem that integrates the pars-complexity measure in the decision process. Second, using this model, we propose a decomposition of the penalties imposed by locational complexity into (a) an intrinsic cost of structural complexity; and (b) an avoidable cost of ignoring such complexity in the decision process. Such a decomposition is a valuable tool for identifying more effective measures for tackling locational complexity, moreover, it has allowed us to provide an explanation to the so-called addiction to growth within the locational context. Finally, we propose three alternative strategies that attempt to mimic different approaches used in practice by companies that have engaged in network restructuring processes. The impact of those approaches is evaluated through extensive numerical experiments. Our experimental results suggest that network restructuring efforts that are not accompanied by a substantial reduction on the target market of the company, fail at reducing complexity-related costs and, therefore, have a limited impact on the companys profitability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员