We give a new class of models for time series data in which actors are listed in order of precedence. We model the lists as a realisation of a queue in which queue-position is constrained by an underlying social hierarchy. We model the hierarchy as a partial order so that the lists are random linear extensions. We account for noise via a random queue-jumping process. We give a marginally consistent prior for the stochastic process of partial orders based on a latent variable representation for the partial order. This allows us to introduce a parameter controlling partial order depth and incorporate actor-covariates informing the position of actors in the hierarchy. We fit the model to witness lists from Royal Acta from England, Wales and Normandy in the eleventh and twelfth centuries. Witnesses are listed in order of social rank, with any bishops present listed as a group. Do changes in the order in which the bishops appear reflect changes in their personal authority? The underlying social order which constrains the positions of bishops within lists need not be a complete order and so we model the evolving social order as an evolving partial order. The status of an Anglo-Norman bishop was at the time partly determined by the length of time they had been in office. This enters our model as a time-dependent covariate. We fit the model, estimate partial orders and find evidence for changes in status over time. We interpret our results in terms of court politics. Simpler models, based on bucket orders and vertex-series-parallel orders, are rejected. We compare our results with a stochastic process extension of the Plackett-Luce model.
翻译:我们给时间序列数据提供了一种新的模型, 将行为者按顺序排列。 我们将列表作为实现队列的模型, 排队位置受到一个基本社会等级的限制。 我们将排序作为部分顺序, 使列表成为随机线性扩展。 我们通过随机排队跳跃程序对噪音进行核算。 我们给基于部分顺序的潜在变量代表制的局部命令的随机随机过程提供一个略为一致的预选过程。 这允许我们引入一个参数, 控制部分顺序深度, 并纳入行为方- 变量, 以告知等级中的行为方的地位。 我们在十一和十二个世纪将排队位置限制在队列位置上的队列位置。 我们将模型用于见证来自英格兰、威尔士和诺曼底的队列名单。 证人按社会等级排列顺序列出, 以任意顺序排列。 我们的顺序排序顺序顺序在一定的时间里有变化的顺序顺序, 我们的顺序在时间上的顺序上找到一个不变的轮廓, 我们的轮廓的轮廓在时间上的轮廓中, 我们的轮廓在时间里, 我们的轮廓中找到一个固定的轮廓, 我们的轮的轮廓在时间里, 我们的轮的轮的轮廓在时间里, 我们找到的轮廓中, 我们的轮廓中, 我们的轮的轮的轮廓在时间里, 我们找到的轮的轮的轮的轮的轮的轮的轮的轮廓, 我们的变。