Electromyography (EMG) is a measure of muscular electrical activity and is used in many clinical/biomedical disciplines and modern human computer interaction. Myo-electric prosthetics analyze and classify the electrical signals recorded from the residual limb. The classified output is then used to control the position of motors in a robotic hand and a movement is produced. The aim of this project is to develop a low-cost and effective myo-electric prosthetic hand that would meet the needs of amputees in developing countries. The proposed prosthetic hand should be able to accurately classify five different patterns (gestures) using EMG recordings from three muscles and control a robotic hand accordingly. The robotic hand is composed of two servo motors allowing for two degrees of freedom. After establishing an efficient signal acquisition and amplification system, EMG signals were thoroughly analyzed in the frequency and time domain. Features were extracted from both domains and a shallow neural network was trained on the two sets of data. Results yielded an average classification accuracy of 97.25% and 95.85% for the time and frequency domains respectively. Furthermore, results showed a faster computation and response for the time domain analysis; hence, it was adopted for the classification system. A wrist rotation mechanism was designed and tested to add significant functionality to the prosthetic. The mechanism is controlled by two of the five gestures, one for each direction. Which added a third degree of freedom to the overall design. Finally, a tactile sensory feedback system which uses force sensors and vibration motors was developed to enable sensation of the force inflicted on the hand for the user.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员