Navigation through uncontrolled intersections is one of the key challenges for autonomous vehicles. Identifying the subtle differences in hidden traits of other drivers can bring significant benefits when navigating in such environments. We propose an unsupervised method for inferring driver traits such as driving styles from observed vehicle trajectories. We use a variational autoencoder with recurrent neural networks to learn a latent representation of traits without any ground truth trait labels. Then, we use this trait representation to learn a policy for an autonomous vehicle to navigate through a T-intersection with deep reinforcement learning. Our pipeline enables the autonomous vehicle to adjust its actions when dealing with drivers of different traits to ensure safety and efficiency. Our method demonstrates promising performance and outperforms state-of-the-art baselines in the T-intersection scenario.
翻译:通过不受控制的十字路口导航是自主车辆面临的关键挑战之一。 识别其他驾驶员隐藏特性的微妙差异,在这种环境下航行时可带来重大好处。 我们提出一种不受监督的推论驱动特性的方法,例如从观察到的车辆轨迹中推断驾驶风格。 我们使用一个具有经常性神经网络的变式自动编码器,学习各种特征的潜在表现,而没有任何地面真实特征标签。 然后, 我们使用这种特性表示来学习一种政策,让自主驾驶员通过具有深层加固学习的交界处进行导航。 我们的管道使自主车辆在与不同特性的驾驶员打交道时能够调整其行动,以确保安全和效率。 我们的方法展示了有前途的业绩,并超越了T- 交叉点情景中最先进的基线。