We introduce a novel prior distribution for modelling the weights in mixture models based on a generalisation of the Dirichlet distribution, the Selberg Dirichlet distribution. This distribution contains a repulsive term, which naturally penalises values that lie close to each other on the simplex, thus encouraging few dominating clusters. The repulsive behaviour induces additional sparsity on the number of components. We refer to this construction as sparsity-inducing partition (SIP) prior. By highlighting differences with the conventional Dirichlet distribution, we present relevant properties of the SIP prior and demonstrate their implications across a variety of mixture models, including finite mixtures with a fixed or random number of components, as well as repulsive mixtures. We propose an efficient posterior sampling algorithm and validate our model through an extensive simulation study as well as an application to a biomedical dataset describing children's Body Mass Index and eating behaviour.


翻译:本文提出了一种基于狄利克雷分布推广形式——塞尔伯格狄利克雷分布的新型先验分布,用于建模混合模型中的权重参数。该分布包含排斥项,能自然惩罚单纯形上相邻的取值,从而促进少数主导簇的形成。这种排斥特性对分量数量产生了额外的稀疏性诱导效果,我们将此构造称为稀疏诱导划分(SIP)先验。通过对比传统狄利克雷分布的差异,我们阐述了SIP先验的关键性质,并论证了其在各类混合模型中的应用价值,包括分量数量固定或随机的有限混合模型以及排斥性混合模型。我们提出了一种高效的后验采样算法,并通过大量模拟研究及儿童身体质量指数与饮食行为生物医学数据集的应用验证了模型的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
12+阅读 · 2021年9月13日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员