We propose a reinforcement learning approach for real-time exposure control of a mobile camera that is personalizable. Our approach is based on Markov Decision Process (MDP). In the camera viewfinder or live preview mode, given the current frame, our system predicts the change in exposure so as to optimize the trade-off among image quality, fast convergence, and minimal temporal oscillation. We model the exposure prediction function as a fully convolutional neural network that can be trained through Gaussian policy gradient in an end-to-end fashion. As a result, our system can associate scene semantics with exposure values; it can also be extended to personalize the exposure adjustments for a user and device. We improve the learning performance by incorporating an adaptive metering module that links semantics with exposure. This adaptive metering module generalizes the conventional spot or matrix metering techniques. We validate our system using the MIT FiveK and our own datasets captured using iPhone 7 and Google Pixel. Experimental results show that our system exhibits stable real-time behavior while improving visual quality compared to what is achieved through native camera control.


翻译:我们建议了个人可以个人化的移动相机实时曝光控制强化学习方法。 我们的方法基于Markov 决策程序( MDP ) 。 根据当前框架,我们的系统预测了曝光量的变化,以便优化图像质量、快速趋同和最低时间振荡之间的平衡。 我们将曝光量预测功能模拟成一个完全共进的神经网络,可以通过高斯政策梯度在终端到终端时进行培训。 因此,我们的系统可以将现场语义与曝光值联系起来; 也可以扩展为用户和装置的曝光量调整个性化。 我们通过纳入一个适应性计量模块来改进学习绩效, 该模块将图像质量与暴露联系起来。 这个适应性计量模块将常规点或矩阵测量技术统称为常规点或矩阵测量技术。 我们用iPhone 7 和 Google Pixel 来验证我们的系统。 实验结果显示,我们的系统在通过本地摄像控制来改进视觉质量的同时, 显示出稳定的实时行为。

2
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Top
微信扫码咨询专知VIP会员