Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
翻译:相较于视觉和语言等更为成熟的感知模态,触觉感知在神经科学中的理解仍显不足,在人工系统中的效能也相对有限。为弥合这些差距,我们引入了一种新颖的编码器-注意力-解码器(EAD)框架,通过定制化的啮齿动物触须阵列模拟器生成的真实触觉输入序列,系统性地探索任务优化的时序神经网络空间。研究发现,在触觉分类任务中,卷积循环神经网络(ConvRNNs)作为编码器,其性能优于纯前馈架构和状态空间架构。尤为关键的是,基于ConvRNN编码器的EAD模型所获得的神经表征与啮齿动物体感皮层的活动高度匹配,其可解释的神经变异达到饱和,并揭示出监督分类性能与神经对齐度之间存在清晰的线性关系。此外,采用触觉特异性数据增强训练的、基于对比自监督ConvRNN编码器的EAD模型,其神经拟合度与监督学习模型相当,可作为一种具有行为学相关性且无需标注的替代方法。对于神经科学而言,我们的发现强调了非线性循环处理在体感皮层通用触觉表征中的重要性,首次为该系统的底层归纳偏倚提供了定量描述。对于具身人工智能,我们的结果凸显了循环EAD架构在处理真实触觉输入方面的重要性,以及量身定制的自监督学习方法对于利用动物在非结构化环境中感知所用的同类传感器实现鲁棒触觉感知的关键作用。