The classical and extended occupancy distributions are useful for examining the number of occupied bins in problems involving random allocation of balls to bins. We examine the extended occupancy problem by framing it as a Markov chain and deriving the spectral decomposition of the transition probability matrix. We look at three distributions of interest that arise from the problem, all involving the noncentral Stirling numbers of the second kind. These distributions give a useful generalisation to the binomial and negative-binomial distributions. We examine how these distributions relate to one another, and we derive recursive properties and mixture properties that characterise the distributions.
翻译:传统和延长占用分布法有助于在随机向垃圾桶分配球的问题中检查占用的垃圾箱数量。我们通过将它设置为Markov链条和产生转换概率矩阵的光谱分解来审查长期占用问题。我们审视了问题产生的三种利益分布,均涉及第二类非中流层数字。这些分布法对二进制和负二进制分布法进行了有益的概括。我们审视了这些分布法是如何相互关联的,我们从中产生了循环属性和混合属性,这些属性和混合属性是分配法的特征。