This paper is a part of a student project in Machine Learning at the Norwegian University of Science and Technology. In this paper, a deep convolutional neural network with five convolutional layers and three fully-connected layers is presented to estimate the ages of individuals based on images. The model is in its entirety trained from scratch, where a combination of three different datasets is used as training data. These datasets are the APPA dataset, UTK dataset, and the IMDB dataset. The images were preprocessed using a proprietary face-recognition software. Our model is evaluated on both a held-out test set, and on the Adience benchmark. On the test set, our model achieves a categorical accuracy of 52%. On the Adience benchmark, our model proves inferior compared with other leading models, with an exact accuray of 30%, and an one-off accuracy of 46%. Furthermore, a script was created, allowing users to estimate their age directly using their web camera. The script, alongside all other code, is located in our GitHub repository: AgeNet.
翻译:本文是挪威科技大学机器学习的学生项目的一部分。 在本文中, 展示了一个包含五个进化层和三个完全连接层的深层神经网络, 以根据图像来估计个人年龄。 模型是完全从零开始训练的, 其中三个不同的数据集组合在一起用作培训数据。 这些数据集是 APPA 数据集、 UTK 数据集和IMDB 数据集。 这些图像是使用一个专有的面部识别软件预处理的。 我们的模型是在一个固定的测试组和Adience 基准上进行评估的。 在测试组中, 我们的模型获得了52%的绝对准确性。 在 Adience 基准上, 我们的模型比其他主要模型低, 准确的反射度为30%, 单向精确度为46% 。 此外, 创建了一个脚本, 用户可以直接使用他们的网络相机来估计其年龄 。 脚本和所有其他代码都位于我们的 GitHub 仓库: AgeNet 。