Lazy search trees (Sandlund & Wild FOCS 2020, Sandlund & Zhang SODA 2022) are sorted dictionaries whose update and query performance smoothly interpolates between that of efficient priority queues and binary search trees - automatically, depending on actual use; no adjustments are necessary to the data structure to realize the cost savings. In this paper, we design lazy B-trees, a variant of lazy search trees suitable for external memory that generalizes the speedup of B-trees over binary search trees wrt. input/output operations to the same smooth interpolation regime. A key technical difficulty to overcome is the lack of a (fully satisfactory) external variant of biased search trees, on which lazy search trees crucially rely. We give a construction for a subset of performance guarantees sufficient to realize external-memory lazy search trees, which we deem of independent interest.


翻译:惰性搜索树(Sandlund & Wild FOCS 2020, Sandlund & Zhang SODA 2022)是一种排序字典,其更新和查询性能可在高效优先队列与二叉搜索树之间平滑插值——这种插值根据实际使用情况自动实现,无需对数据结构进行调整即可实现成本节约。本文设计了惰性B树,这是一种适用于外部存储的惰性搜索树变体,它将B树相对于二叉搜索树在输入/输出操作上的加速优势推广至相同的平滑插值机制。需要克服的关键技术难点在于缺乏(完全令人满意的)偏置搜索树的外部存储变体,而惰性搜索树的核心依赖于此类结构。我们针对实现外部存储惰性搜索树所需的部分性能保证提出了构建方法,这一成果本身具有独立的研究价值。

0
下载
关闭预览

相关内容

互联网
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员