RadioWeaves, in which distributed antennas with integrated radio and compute resources serve a large number of users, is envisioned to provide high data rates in next generation wireless systems. In this paper, we develop a physical layer abstraction model to evaluate the performance of different RadioWeaves deployment scenarios. This model helps speed up system-level simulators of the RadioWeaves and is made up of two blocks. The first block generates a vector of signal-to-interference-plus-noise ratios (SINRs) corresponding to each coherence block, and the second block predicts the packet error rate corresponding to the SINRs generated. The vector of SINRs generated depends on different parameters such as the number of users, user locations, antenna configurations, and precoders. We have also considered different antenna gain patterns, such as omni-directional and directional microstrip patch antennas. Our model exploits the benefits of exponential effective SINR mapping (EESM). We study the robustness and accuracy of the EESM for RadioWeaves.
翻译:射电网是分布式天线,配有集成无线电和计算资源,供大量用户使用,设想在下一代无线系统中提供高数据率。在本文中,我们开发了一个物理层抽象模型,以评价不同射电网部署情景的性能。这个模型有助于加速无线电网的系统级模拟器,由两个区块组成。第一个区块产生一个与每个一致性区块相对应的信号到干涉加噪音比率矢量,第二个区块预测与生成的SIRR相对应的组合错误率。SIRR的矢量取决于不同参数,如用户数量、用户位置、天线配置和预相交。我们还考虑了不同天线增益模式,如万向和定向微吸附天线。我们的模型利用了SINR的指数有效绘图(EEMM)的好处。我们研究了无线电网的EEMM的强度和准确性。