Deep neural network (DNN)-based channel decoding is widely considered in the literature. The existing solutions are investigated for the case of hard output, i.e. when the decoder returns the estimated information word. At the same time, soft-output decoding is of critical importance for iterative receivers and decoders. In this paper, we focus on the soft-output DNN-based decoding problem. We start with the syndrome-based approach proposed by Bennatan et al. (2018) and modify it to provide soft output in the AWGN channel. The new decoder can be considered as an approximation of the MAP decoder with smaller computation complexity. We discuss various regularization functions for joint DNN-MAP training and compare the resulting distributions for [64, 45] BCH code. Finally, to demonstrate the soft-output quality we consider the turbo-product code with [64, 45] BCH codes as row and column codes. We show that the resulting DNN-based scheme is very close to the MAP-based performance and significantly outperforms the solution based on the Chase decoder. We come to the conclusion that the new method is prospective for the challenging problem of DNN-based decoding of long codes consisting of short component codes.


翻译:深度神经网络(DNN)的信道解码在文献中被广泛考虑。现有的解决方案针对硬输出的情况进行研究,即当译码器返回估计信息时。同时,软输出解码对于迭代接收机和译码器至关重要。在本文中,我们关注软输出的基于DNN的解码问题。我们从Bennatan等人提出的基于综合症的方法开始,并对其进行修改,以在AWGN通道中提供软输出。新的解码器可以视为具有较小计算复杂度的MAP解码器的近似值。我们讨论了用于联合DNN-MAP训练的各种正则化函数,并比较了[64,45] BCH码的结果分布。最后,为了展示软输出质量,我们考虑对[64,45] BCH码进行行和列编码的Turbo产品码。我们表明,由DNN构建的解码方案与MAP性能非常接近,并且显着优于基于Chase解码器的解决方案。我们得出结论,这种新方法在由短分量码组成的长码的基于DNN的解码方面具有前景。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
12+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
12+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员