Accelerated life-tests (ALTs) are applied for inferring lifetime characteristics of highly reliable products. In particular, step-stress ALTs increase the stress level at which units under test are subject at certain pre-fixed times, thus accelerating product wear and inducing its failure. In some cases, due to cost or product nature constraints, continuous monitoring of devices is infeasible but the units are inspected for failures at particular inspection time points. In such setups, the ALT response is interval-censored. Furthermore, when a test unit fails, there are often more than one fatal cause for the failure, known as competing risks. In this paper, we assume that all competing risks are independent and follow an exponential distribution with scale parameter depending on the stress level. Under this setup, we present a family of robust estimators based on the density power divergence, including the classical maximum likelihood estimator as a particular case. We derive asymptotic and robustness properties of the MDPDE, showing its consistency for large samples. Based on these MDPDEs, estimates of the lifetime characteristics of the product as well as estimates of cause-specific lifetime characteristics have been developed. Direct, transformed and bootstrap confidence intervals for the mean lifetime to failure, reliability at a mission time, and distribution quantiles are proposed, and their performance is empirically compared through simulations. Besides, the performance of the MDPDE family has been examined through an extensive numerical study and the methods of inference discussed here are illustrated with a real-data example regarding electronic devices.
翻译:暂无翻译