Human assistive robotics have the potential to help the elderly and individuals living with disabilities with their Activities of Daily Living (ADL). Robotics researchers present bottom up solutions using various control methods for different types of movements. Health research on the other hand focuses on clinical assessment and rehabilitation leaving arguably important differences between the two domains. In particular, little is known quantitatively on what ADLs humans perform in their everyday environment - at home, work etc. This information can help guide development and prioritization of robotic technology for in-home assistive robotic deployment. This study targets several lifelogging databases, where we compute (i) ADL task frequency from long-term low sampling frequency video and Internet of Things (IoT) sensor data, and (ii) short term arm and hand movement data from 30 fps video data of domestic tasks. Robotics and health care communities have different terms and taxonomies for representing tasks and motions. We derive and discuss a robotics-relevant taxonomy from this quantitative ADL task and ICF motion data in attempt to ameliorate these taxonomic differences. Our statistics quantify that humans reach, open drawers, doors, and retrieve and use objects hundreds of times a day. Commercial wheelchair mounted robot arms can help 150,000 upper body disabled in the USA alone, but only a few hundred robots are deployed. Better user interfaces, and more capable robots can increase the potential user base and number of ADL tasks solved significantly.
翻译:人类辅助机器人具有帮助老年人和残疾人开展日常生活活动的潜力。机器人研究人员利用不同类型运动的各种控制方法,提出自下而上的解决办法。另一方面,健康研究侧重于临床评估和康复,这在两个领域之间产生了明显的重要差异。特别是,在数量上很少了解人类在日常环境中----在家、工作等----如何在家庭、工作等----的表现。这种信息有助于指导开发和优先开发机器人技术,用于家庭辅助机器人的部署。这一研究针对几个生命调查数据库,我们在此数据库中计算(一) 长期低取样频率视频和互联网的ADL任务频率,用于不同类型运动的传感器数据,以及(二) 短期手臂和手动数据,用于30fps的家庭任务视频数据。机器人和保健社区在其任务和运动方面有着不同的条件和分类。我们从这一量化的ADL任务和ICF运动数据中得出并讨论与机器人相关的分类方法,以便改善这些分类差异。我们的统计数据可以量化人类进入、开放的抽屉、门以及长期低采频视频视频视频和互联网的频率,以及(IoT)传感器(IoT)传感器(IO)传感器(IOS)传感器(INS)传感器(IRC)传感器(IRC)传感器)传感器(O)传感器(O)传感器(O)传感器)传感器(O)传感器(ID)传感器(O)传感器(INS(O)(INS)的功能)的功能)的功能)的功能基础物体(OB)的潜在数数只有数百个)潜在),仅能和机器人(AD),只能大幅增加。