Recently, machine learning (ML) has become a popular approach to support self-adaptation. ML has been used to deal with several problems in self-adaptation, such as maintaining an up-to-date runtime model under uncertainty and scalable decision-making. Yet, exploiting ML comes with inherent challenges. In this paper, we focus on a particularly important challenge for learning-based self-adaptive systems: drift in adaptation spaces. With adaptation space we refer to the set of adaptation options a self-adaptive system can select from at a given time to adapt based on the estimated quality properties of the adaptation options. Drift of adaptation spaces originates from uncertainties, affecting the quality properties of the adaptation options. Such drift may imply that eventually no adaptation option can satisfy the initial set of the adaptation goals, deteriorating the quality of the system, or adaptation options may emerge that allow enhancing the adaptation goals. In ML, such shift corresponds to novel class appearance, a type of concept drift in target data that common ML techniques have problems dealing with. To tackle this problem, we present a novel approach to self-adaptation that enhances learning-based self-adaptive systems with a lifelong ML layer. We refer to this approach as lifelong self-adaptation. The lifelong ML layer tracks the system and its environment, associates this knowledge with the current tasks, identifies new tasks based on differences, and updates the learning models of the self-adaptive system accordingly. A human stakeholder may be involved to support the learning process and adjust the learning and goal models. We present a general architecture for lifelong self-adaptation and apply it to the case of drift of adaptation spaces that affects the decision-making in self-adaptation. We validate the approach for a series of scenarios using the DeltaIoT exemplar.


翻译:---- 近年来,机器学习(ML)已成为支持自适应的流行方法。ML已被用来解决自适应中的几个问题,如在不确定性下维护最新的运行时模型和可伸缩的决策制定。然而,利用ML是面临固有的挑战的。在本文中,我们关注自适应系统中一个特别重要的基于学习的系统的挑战:自适应空间漂移。自适应空间是指能够在给定时间选择的自适应选项的集合,以根据估计的自适应选项的质量特性来自适应。适应空间的漂移起源于影响自适应选项的质量特性的不确定性。这种漂移可能意味着最终没有自适应选项能够满足最初的自适应目标,从而降低系统的质量,或者可能出现能够增强自适应目标的自适应选项。在ML中,这种转移相当于目标数据中的新类出现,是目标数据中的概念漂移类型,常见的ML技术处理此类问题有困难。为了解决这个问题,我们提出了一种新的自适应方法,它将学习型自适应系统与一个终身ML层相结合。我们将这种方法称为终身自适应。终身ML层跟踪系统及其环境,将这些知识与当前任务关联起来,基于差异识别新任务,并相应地更新学习模型。可以涉及人类利益相关者来支持学习过程并调整学习和目标模型。我们提出了一种终身自适应的通用架构,并将其应用于影响自适应中的适应空间漂移的决策制定的情况。通过使用DeltaIoT示例,我们验证了该方法的一系列场景。

0
下载
关闭预览

相关内容

【伯克利博士论文】学习在动态环境中泛化,103页pdf
专知会员服务
71+阅读 · 2022年10月12日
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
基于Keras进行迁移学习
论智
12+阅读 · 2018年5月6日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Soft Merging of Experts with Adaptive Routing
Arxiv
0+阅读 · 2023年6月6日
Arxiv
0+阅读 · 2023年6月6日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关资讯
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
基于Keras进行迁移学习
论智
12+阅读 · 2018年5月6日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员