The availability of large linguistic data sets enables data-driven approaches to study linguistic change. This work explores the word rank dynamics of eight languages by investigating the Google Books corpus unigram frequency data set. We observed the rank changes of the unigrams from 1900 to 2008 and compared it to a Wright-Fisher inspired model that we developed for our analysis. The model simulates a neutral evolutionary process with the restriction of having no disappearing words. This work explains the mathematical framework of the model - written as a Markov Chain with multinomial transition probabilities - to show how frequencies of words change in time. From our observations in the data and our model, word rank stability shows two types of characteristics: (1) the increase/decrease in ranks are monotonic, or (2) the average rank stays the same. Based on our model, high-ranked words tend to be more stable while low-ranked words tend to be more volatile. Some words change in ranks in two ways: (a) by an accumulation of small increasing/decreasing rank changes in time and (b) by shocks of increase/decrease in ranks. Most of the stopwords and Swadesh words are observed to be stable in ranks across eight languages. These signatures suggest unigram frequencies in all languages have changed in a manner inconsistent with a purely neutral evolutionary process.


翻译:大型语言数据集的可用性使得以数据驱动的方式来研究语言变化。 这项工作通过调查Google Books Pasper ungram频率数据集来探索八种语言的字级动态。 我们观察了从1900年到2008年单数的级别变化,并将其与我们为分析而开发的Wright- Fisher启发型模型进行了比较。 模型模拟了一个中立的进化过程, 限制没有消失的单词。 这项工作解释了模型的数学框架 — 写成具有多重过渡概率的Markov链条 — 以显示文字在时间上的频率变化。 从我们在数据和模型中的观察看, 字级稳定性显示了两种特征:(1) 单调的军衔增加/减少, 或者说普通军衔保持不变。 根据我们的模型, 高调的单调的词往往更加稳定, 而低调的单词则比较不稳定。 以两种方式排列的词级变化:(a) 通过在时间上小增/定级的变化,以及(b) 通过在级别上增/降级的冲击, 单级显示两种特性的特性。 多数中阶语言在纯级中, 级的顺序上显示的是, 不变的顺序是稳定的顺序。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2018年9月6日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员