Not all convex functions on $\mathbb{R}^n$ have finite minimizers; some can only be minimized by a sequence as it heads to infinity. In this work, we aim to develop a theory for understanding such minimizers at infinity. We study astral space, a compact extension of $\mathbb{R}^n$ to which such points at infinity have been added. Astral space is constructed to be as small as possible while still ensuring that all linear functions can be continuously extended to the new space. Although astral space includes all of $\mathbb{R}^n$, it is not a vector space, nor even a metric space. However, it is sufficiently well-structured to allow useful and meaningful extensions of concepts of convexity, conjugacy, and subdifferentials. We develop these concepts and analyze various properties of convex functions on astral space, including the detailed structure of their minimizers, exact characterizations of continuity, and convergence of descent algorithms.
翻译:$mathbb{R ⁇ n$上并非所有的 convex 函数都具有有限的最小值; 某些函数只能以其直到无限的顺序来最小化 。 在这项工作中, 我们的目标是开发一个理论来理解这种无限的最小化器 。 我们研究星空, 其紧凑的延伸 $mathbb{R ⁇ n$, 其无限的点已经添加到 $mathb{R ⁇ n$ 。 星空的构造尽可能小, 同时仍然确保所有线性功能能够持续扩展到新的空间 。 虽然星空包括全部 $\ mathb{R ⁇ n$, 但它不是一个矢量空间, 甚至是一个测量空间 。 但是, 它的结构足够完善, 足以允许以有用和有意义的方式扩展 convexity、 conjugacy和次偏差的概念 。 我们开发这些概念并分析星空等空间的 convex 函数的各种属性, 包括其最小化器的详细结构、 连续性的精确描述以及源算法的融合 。