Responding rapidly to a patient who is demonstrating signs of imminent clinical deterioration is a basic tenet of patient care. This gave rise to a patient safety intervention philosophy known as a Rapid Response System (RRS), whereby a patient who meets a pre-determined set of criteria for imminent clinical deterioration is immediately assessed and treated, with the goal of mitigating the deterioration and preventing intensive care unit (ICU) transfer, cardiac arrest, or death. While RRSs have been widely adopted, multiple systematic reviews have failed to find evidence of their effectiveness. Typically, RRS criteria are simple, expert (consensus) defined rules that identify significant physiologic abnormalities or are based on clinical observation. If one can find a pattern in the patient's data earlier than the onset of the physiologic derangement manifest in the current criteria, intervention strategies might be more effective. In this paper, we apply machine learning to electronic medical records (EMR) to infer if patients are at risk for clinical deterioration. Our models are more sensitive and offer greater advance prediction time compared with existing rule-based methods that are currently utilized in hospitals. Our results warrant further testing in the field; if successful, hospitals can integrate our approach into their existing IT systems and use the alerts generated by the model to prevent ICU transfer, cardiac arrest, or death, or to reduce the ICU length of stay.


翻译:快速应对正在显示临床恶化迹象的病人迅速作出反应,这是病人护理的基本原则。这产生了一种病人安全干预理念,称为快速反应系统(RRS),即立即评估和治疗符合预定的临床恶化状况标准的病人,目的是减轻恶化,防止重症监护单位转移、心脏停止或死亡;虽然广泛采用RRS,但多重系统审查未能发现其有效性的证据。通常,RRS标准比较简单,专家(consensus)界定了确定重大生理异常或基于临床观察的患者安全干预规则。如果在病人数据中找到比开始生理异常状况早一些的规律,那么在现行标准中显示的干预战略可能更加有效。在本文件中,我们应用机器学习电子医疗记录(EMR)来推断病人是否面临临床恶化的风险。我们的模式比较敏感,并且比目前医院使用的基于规则的方法更提前预测时间。如果我们的结果可以进一步测试病人数据,那么,我们就可以将现有的医院转移到IRC或I系统。如果成功,那么,我们的I系统可以将目前的I系统转移到I系统,那么我们就可以将目前的I系统转移到I系统。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2018年4月11日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员